- Oh, B.-H., & Markley, J. L. (1989) Biopolymers 28, 1833-1837.
- Oh, B.-H., & Markley, J. L. (1990) Biochemistry (third paper of three in this issue).
- Oh, B.-H., Westler, M. W., Darba, P., & Markley, J. L. (1988) Science 240, 908-911.
- Oh, B.-H., Westler, W. M., Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085.
- Oh, B.-H., Mooberry, E. S., & Markley, J. L. (1990) Biochemistry (second paper of three in this issue).
- Phillips, W. D., & Poe, M. (1973) in *Iron Sulfur Proteins* (Lovenberg, W., Ed.) Vol. II, pp 255–284, Academic Press, New York and London.
- Poe, M., Phillips, W. D., Glickson, J. D., McDonald, C. C., & San Pietro, A. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 68-71
- Rance, M., Sørensen, O. W., Bodenhausen, G., Wagner, G., Ernst, R. R., & Wüthrich, K. (1983) *Biochem. Biophys. Res. Commun.* 117, 479-485.
- Salmeen, I., & Palmer, G. (1972) Arch. Biochem. Biophys. 150, 767-773.
- Shaka, A. J., Keeler, J., Frenkiel, T., & Freeman, R. (1983)
 J. Magn. Reson. 52, 335-338.
- Shon, K., & Opella, S. J. (1989) J. Magn. Reson. 82, 193-197.

- Stockman, B. J., Westler, W. M., Darba, P., & Markley, J. L. (1988a) J. Am. Chem. Soc. 110, 4095-4096.
- Stockman, B. J., Westler, W. M., Mooberry, E. S., & Markley, J. L. (1988b) Biochemistry 27, 136-142.
- Stockman, B. J., Reily, M. D., Westler, W. M., Ulrich, E. L., & Markley, J. L. (1989) *Biochemistry* 28, 230-236.
- Trebst, A., & Avron, M., Eds. (1977) *Photosynthesis*, Vol. l, Photosynthetic Electron Transport and Photophosphorylation, Springer-Verlag, New York.
- Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T., & Matsubara, H. (1981) J. Biochem. 90, 1763-1773.
- Tsukihara, T., Fukuyama, K., & Katsube, Y. (1986) in *Iron-Sulfur Protein Research* (Matsubara, H., et al., Eds.) pp 59-68, Japan Science Society Press, Tokyo.
- Tsutusi, T., Tsukihara, T., Fukuyama, K., Katsube, Y., Hase, T., Matsubara, H., Nishikawa, Y., & Tanaka, N. (1983) J. Biochem. 94, 299-302.
- Westler, W. M., Kainosho, M., Nagao, H., Tomonaga, N., & Markley, J. L. (1988) J. Am. Chem. Soc. 110, 4093-4095.
- Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, pp 130-161, Wiley, New York.

Multinuclear Magnetic Resonance Studies of the 2Fe·2S* Ferredoxin from Anabaena Species Strain PCC 7120. 2. Sequence-Specific Carbon-13 and Nitrogen-15 Resonance Assignments of the Oxidized Form[†]

Byung-Ha Oh, Eddie S. Mooberry, and John L. Markley*

Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin—Madison, 420 Henry Mall, Madison, Wisconsin 53706 Received October 19, 1989

ABSTRACT: Multinuclear two-dimensional NMR techniques were used to assign nearly all diamagnetic ¹³C and ¹⁵N resonances of the plant-type 2Fe-2S* ferredoxin from *Anabaena* sp. strain PCC 7120. Since a ¹³C spin system directed strategy had been used to identify the ¹H spin systems [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) *J. Am. Chem. Soc. 111*, 3083–3085], the sequence-specific ¹H assignments [Oh, B.-H., & Markley, J. L. (1990) *Biochemistry* (first paper of three in this issue)] also provided sequence-specific ¹³C assignments. Several resonances from ¹H-¹³C groups were assigned independently of the ¹H assignments by considering the distances between these nuclei and the paramagnetic 2Fe-2S* center. A ¹³C-¹⁵N correlation data set was used to assign additional carbonyl carbons and to analyze overlapping regions of the ¹³C-¹³C correlation spectrum. Sequence-specific assignments of backbone and side-chain nitrogens were based on ¹H-¹⁵N and ¹³C-¹⁵N correlations obtained from various two-dimensional NMR experiments.

Until recently, extensive assignments in NMR¹ spectra of proteins have been confined to protons, and the wealth of information provided by ¹³C and ¹⁵N nuclei was largely ne-

glected. Although sequence-specific ¹H resonance assignments are available for about 60 small proteins [for a review, see Markley (1989)], extensive ¹³C assignments are limited to only three proteins: bovine pancreatic trypsin inhibitor (Wagner & Brühwiler, 1986), turkey ovomucoid third domain (Robertson et al., 1989), and staphylococcal nuclease (Wang et al., 1990). Extensive backbone nitrogen assignments are limited to bovine pancreatic trypsin inhibitor (Glushka & Cowburn, 1987), staphylococcal nuclease (Torchia et al., 1989; Wang et al., 1990), inflammatory protein C5a (Zuiderweg & Fesik, 1989), DNA binding protein Ner from phage Mu (Gronen-

[†]This work was supported by USDA Competitive Grant 88-37262-3406 and National Institutes of Health Grant RR02301 from the Biomedical Research Technology Program, Division of Research Resources, and made use of the National Magnetic Resonance Facility at Madison, which is supported in part by Grant RR023021. Additional equipment in the facility was purchased with funds from the University of Wisconsin, the NSF Biological Biomedical Research Technology Program (Grant DMB-8415048), the NIH Shared Instrumentation Program (Grant RR02781), and the U.S. Department of Agriculture. B.-H.O. is supported by a Peterson Fellowship from the University of Wisconsin—Madison.

^{*}To whom correspondence should be addressed.

¹ Abbreviations used are defined in Oh and Markley (1990a).

born et al., 1989a), and T4 lysozyme (F. W. Dahlquist, personal communication).

Although ¹H-detected heteronuclear chemical shift correlation experiments have been carried out with concentrated protein samples at natural isotopic abundance (Bax et al., 1983; Westler et al., 1984; Ortiz-Polo et al., 1986; Wagner & Brühwiler, 1986), the low natural abundances of ¹³C (1.1%) and 15N (0.4%) has prevented the full exploitation of the single-bond and multiple-bond scalar couplings present in protein spin systems. Uniform or selective ¹³C and/or ¹⁵N isotope enrichment can be used to increase the sensitivity of hetero- and homonuclear chemical shift correlation experiments. It is now widely accepted that isotope-aided NMR spectroscopy of enriched protein samples facilitates resonance assignments. In addition to heteronuclear single-bond correlation experiments (Griffey & Redfield, 1987), many powerful 2D NMR experiments have been proposed recently that provide useful additional chemical shift correlations: ¹³C-¹³C correlation (Oh et al., 1988; Oh & Markley, 1989; Stockman et al., 1988; Westler et al., 1988a), ¹³C-¹⁵N correlation (Westler et al., 1988b; Mooberry et al., 1989; Niemczura et al., 1989), multiple-bond ¹H-¹³C or ¹H-¹⁵N correlation (Bax & Summers, 1986; Bax & Marion, 1988; Clore et al., 1988; Stockman et al., 1989), long-range heteronuclear ¹H-¹³C or ¹H-¹⁵N correlation (Brühwiler & Wagner, 1986; Lerner & Bax, 1986; Clore et al., 1988; Torchia et al., 1989; Oh et al., 1989; Wang et al., 1990), and ¹H-¹⁵N correlation with NOE relay (Shon et al., 1989; Gronenborn et al., 1989b; Wang et al., 1990). In addition, heteronuclear 3D NMR experiments have been reported that spread out two-dimensional ¹H-¹H correlations over the ¹³C or ¹⁵N chemical shift range (Fesik & Zuiderweg, 1989; Fesik et al., 1989; Bax et al., 1989; Zuiderweg & Fesik, 1989).

Isotope-aided 2D and 3D NMR experiments [see Stockman and Markley (1989) for a recent review] not only have paved the way toward resonance assignments of larger proteins (M. > 10000) but also provide additional ways of studying protein structure, function, and dynamics. These include (1) detailed descriptions of internal motions in proteins based on ¹³C relaxation measurements (McCain et al., 1988; Nirmala & Wagner, 1988) or 2D exchange spectroscopy (Montelione & Wagner, 1989), (2) refinement of solution structures by use of dihedral angles measured from heteronuclear multiple-bond coupling constants (Montelione et al., 1989; Kay et al., 1989), by identification of more NOE cross peaks than can be assigned from ¹H NOESY data alone, or by use of isotope-edited NOESY data (Shon et al., 1989; Gronenborn et al., 1989b), and (3) determination of the pK_a values of ionizable groups on the basis of the pH dependence of carbon chemical shifts (Grissom & Markley, 1989).

In this paper, we describe the 2D NMR strategies that led to nearly complete sequence-specific resonance assignments of ¹³C and ¹⁵N atoms in the diamagnetic part of oxidized Anabaena 7120 ferredoxin on the basis of the sequence-specific ¹H resonance assignments of the protein (Oh & Markley, 1990a). These assignments have assisted in deducing the overall folding of the protein in solution and in characterizing the hyperfine-shifed 15N resonances of the ferredoxin (Oh & Markley, 1990b).

MATERIALS AND METHODS

Isotope Enrichment and Protein Purification. [26% U-¹³C]Ferredoxin or [98% U-¹⁵N]ferredoxin was produced, respectively, by growing the Anabaena 7120 on 26% ¹³CO₂ as its sole carbon source or K15NO3 (98+ atom %) as its sole nitrogen source. Double-labeled [26% U-13C,98% U-15N]- ferredoxin was produced by growing the cyanobacterium on 26% ¹³CO₂ and K¹⁵NO₃ (98+ atom %) as its sole carbon and nitrogen sources. Additional experimental details are given in Oh and Markley (1990a).

Chemicals. Sources of isotopes were the Mound Facility of the Monsanto Research Corp. for K15NO3 and Isotec, Inc., for ¹³CO₂ (99+ atom %). The ¹³CO₂ was diluted with natural abundance CO₂ to 26 atom % ¹³C and mixed with air to 10% total CO₂. Other chemicals were of reagent grade or better.

NMR Spectroscopy. NMR sample preparations were similar to those described in Oh and Markley (1990a). The ¹H{¹³C} SBC, ¹H{¹⁵N} SBC, and ¹H{¹⁵N} MBC spectra were obtained on a Bruker AM-500 (11.7 T) NMR spectrometer with a Bruker 5-mm inverse broad-band probe by employing Bruker reverse electronics with or without WALTZ-16 Xnucleus decoupling (Shaka et al., 1983) during acquisition to collapse heteronuclear couplings.

The ¹³C[¹³C] DQC spectrum was collected on a Bruker AM-500 NMR spectrometer equipped with a Bruker 5-mm broad-band probe. The 90° carbon pulse width was 7.5 μ s. The delay time for the double-quantum propagator was set at 10 ms to optimize for one-bond ${}^{13}C^{-13}C$ couplings (~ 50 Hz). WALTZ-16 ¹H decoupling was used during acquisition to collapse ¹H-¹³C splitting.

The ¹³C{¹⁵N} SBC spectrum (Mooberry et al., 1989) was obtained on the Bruker AM-400 wide-bore NMR spectrometer with a special Bruker 10-mm quadruple-tuned probe for ¹³C (observe), ¹H, ¹⁵N, and ²H (lock). WALTZ-16 (Shaka et al., 1983) ¹H decoupling was employed during acquisition to collapse ¹H-¹³C and ¹H-¹⁵N splittings.

The ¹H chemical shifts are referenced to internal TSP. The 15N chemical shifts are referenced to liquid ammonia; the resonance of [15N]ammonium sulfate used as the external standard was taken to be 21.6 ppm at 25 °C. The ¹³C chemical shifts are referenced to external tetramethylsilane; the dioxane signal, which was an external standard, was taken to be 67.8 ppm at 25 °C.

RESULTS

Carbon Assignment Strategy. Conventionally, protonated ¹³C nuclei have been assigned by ¹H-¹³C correlations [as reviewed in Griffey and Redfield (1987)] on the basis of ¹H resonances previously assigned. However, with these data alone, overlap and crowding of ¹H resonances hinder extensive cross assignments of ¹³C nuclei. This problem can be overcome partially by experiments that correlate ¹H and ¹³C nuclei separated by more than one bond (Oh et al., 1990a; Lerner & Bax, 1986; Wagner & Brühwiler, 1986). Since the magnitudes of relayed coherences are dependent on three-bond ¹H coupling constants, unfavorable dihedral angles can lead to missing relay cross peaks. This feature limits the extent of ¹³C assignments by this approach, especially for methylene carbons, which fall in the most crowded spectral region. The ¹³C{¹³C} DQC experiment, which exploits direct, one-bond, ¹³C-¹³C coupling, provides cross peaks from all pairs of directly bonded carbon atoms. The much greater chemical shift dispersion of ¹³C resonances, as compared to ¹H resonances, makes the ¹³C-¹³C correlation experiment the most reliable way of assigning side-chain carbons, including quaternary carbons that do not have attached protons.

 α -Carbon Assignments. The ¹H(¹³C) SBC data (Figure 1) permitted the extension of ${}^{1}H^{\alpha}$ resonance assignments (Oh & Markley, 1990a) to ¹³C^α resonances. Fifty-one cross peaks from ${}^{13}C^{\alpha-1}H^{\alpha}$ units had been previously linked to corresponding ¹H^{\alpha},H^N cross peaks in the COSY fingerprint region by means of a ¹H{¹³C} SBC-HH experiment (Oh et al., 1989).

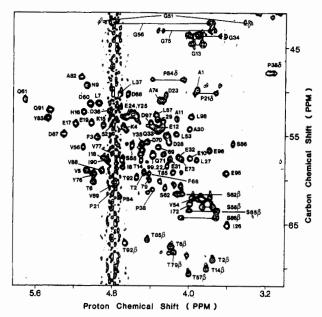


FIGURE 1: Selected region of the 500-MHz ¹H{¹³C} SBC spectrum of oxidized [26% U-¹³C] ferredoxin from *Anabaena* 7120. The sample consisted of 0.5 mL of 7.0 mM ferredoxin in ²H₂O containing 50 mM phosphate buffer at pH* 7.5. 512 blocks of FID's were collected as 4096 data points; each represented the average of 32 transients. A delay time of 3.57 ms was chosen to optimize for 140-Hz ¹H-¹³C couplings. Assignments are designated by the one-letter code for amino acids followed by residue position in the amino acid sequence. In crowded regions, only the residue numbers are given.

Thus, those $^{13}C^{\alpha}$ resonances could be assigned according to the sequence-specific $^{1}H^{\alpha}$ assignments. The remaining $^{1}H^{\alpha}$ assignments were then transferred to unassigned $^{1}H^{\alpha}, ^{13}C^{\alpha}$ cross peaks by chemical shift comparison.

Side-Chain Carbon Assignments. The specific ${}^{13}\text{C}^{\alpha}$ assignments then were extended to corresponding ${}^{13}\text{C}^{\alpha}, {}^{13}\text{C}^{\alpha+\beta}$ cross peaks in the ${}^{13}\text{C}\{{}^{13}\text{C}\}$ DQC map through the use of ${}^{1}\text{H}\{{}^{13}\text{C}\}$ SBC-HH data (Oh et al., 1989). Sequence-specific assignments of side-chain carbons were obtained by following the previously determined ${}^{13}\text{C}-{}^{13}\text{C}$ connectivities (Oh et al.,

1988) starting from α -carbons. Figure 2 shows five examples of sequence-specific assignments of side-chain carbons achieved by following $^{13}\text{C}-^{13}\text{C}$ connectivities in the $^{13}\text{C}\{^{13}\text{C}\}$ DQC spectrum. Aromatic carbons, including nonprotonated carbons, were assigned (Figure 8) primarily from $^{13}\text{C}\{^{13}\text{C}\}$ DQC data.

The ${}^{1}H\{{}^{13}C\}$ SBC data were used to correlate ${}^{1}H\gamma^{-13}C\gamma$ and ${}^{1}H\gamma^{\prime}-{}^{13}C\gamma^{\prime}$ of valine residues and ${}^{1}H^{\delta}-{}^{13}C^{\delta}$ and ${}^{1}H^{\delta\prime}-{}^{13}C^{\delta\prime}$ of isoleucine residues. The ${}^{13}C^{\delta}$ of the single arginine (Arg⁴²) was observed in the ${}^{1}D^{13}C$ spectrum and was assigned on the basis of its characteristic chemical shift position [data are not presented here, but virtually the same spectrum is in Chan and Markley (1983b)].

Backbone Carbonyl Carbon Assignments. In principle, backbone carbonyl carbons can be assigned by tracing $^{13}C^{\alpha}_{-13}C'$ connectivities. However, this region of the $^{13}C\{^{13}C\}$ DQC spectrum is the most crowded because of the similarity of the $^{13}C^{\alpha}$ and $^{13}C'$ chemical shifts from different residues. Thus, with $^{13}C\{^{13}C\}$ DQC data alone, $^{13}C'$ resonance assignments proved difficult. The $^{13}C\{^{15}N\}$ experiment (Figure 3), which disperses the carbonyl carbon resonances over the amide nitrogen chemical shift range, permitted the correlation of backbone $^{13}C'$ and $^{15}N_{i+1}$ resonances. Figure 3 shows sequence-specific assignments of 39 of the backbone $^{13}C'$ resonances on the basis of ^{15}N assignments (see below) or $^{13}C^{\alpha}_{-13}C'$ connectivities.

Nitrogen Assignment Strategy. In the 1D ¹⁵N NMR spectrum of a diamagnetic protein, the backbone resonances from the amino terminus and Pro and the side-chain resonances from His, Trp, Arg, and Lys occur in distinctive chemical shift regions (Witanowski et al., 1981) so that they can be distinguished easily and assigned to residue types. For a sequence-specific assignment, however, one needs to collect ¹H-¹⁵N single-bond or multiple-bond correlation data. The signals from amide nitrogens (peptide bonds and the side chains of Gln and Asn) generally overlap within a 40 ppm region centered around 120 ppm. Heteronuclear single-bond or multiple-bond correlation experiments provide the methods of choice for resolving and analyzing the amide region.

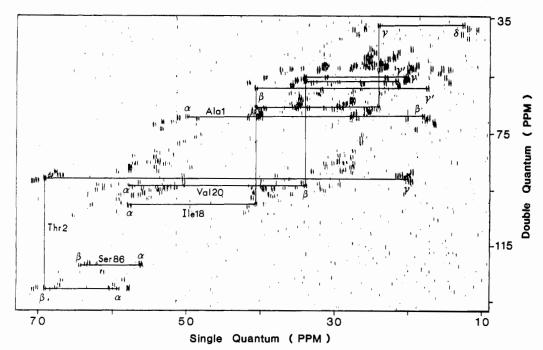


FIGURE 2: Representative regions of the 125-MHz 13 C $\{^{13}$ C $\}$ DQC spectrum of oxidized [26% U- 13 C] ferredoxin from *Anabaena* 7120. Solid lines show how carbon assignments were traced from the α -carbons to the terminal side-chain carbons by means of 13 C- 13 C connectivities. Sample preparation and conditions for the NMR experiment were reported previously (Oh et al., 1989).

FIGURE 3: ¹³C[¹⁵N] SBC spectrum (100.6 MHz ¹³C, 40.55 MHz ¹⁵N) of oxidized Anabaena 7120 ferredoxin. The sample was 4.5 mM [26%] U-13C,95% U-15N] ferredoxin in 2.2 mL of 40 mM phosphate buffer containing 90% 1H₂O/10% 2H₂O; the pH of the sample was 7.1. A total of 128 FID blocks were collected as 8192 data points; each represented the average of 1024 transients. The experiment time was 38 h. In the labeling scheme used, X–Z represents a 13 C', 15 N cross peak from a dipeptide unit where X and Z stand for residue i and i + 1, respectively. The intraresidue 13 Cô, 15 N° and 13 C°, 15 N° cross peaks of Gln and Asn also are indicated.

Backbone Amide Nitrogens. Figure 4 shows the ¹H{¹⁵N} SBC map of Anabaena 7120 ferredoxin recorded in 90% ¹H₂O/10% ²H₂O. Many cross-peak assignments could be based on ¹H^N assignments (Oh & Markley, 1990a). However, overlaps of ¹H^N resonances led to ambiguous assignments in the ¹H₁¹⁵N₁ SBC map. We overcame this problem by exploiting differences in amide proton exchange rates. The HISN SBC spectrum recorded in ²H₂O was compared directly with the ¹H COSY spectrum also recorded in ²H₂O (Figure 5). This comparison provided assignments of the amide groups that remained unexchanged. The exchangelabile amide groups were assigned subsequently, mostly by elimination on comparison of the ¹H₁¹⁵N₁ SBC and ¹H COSY data recorded in ¹H₂O with the data of Figure 5. Remaining ambiguities were removed by identifying NOE relay cross peaks between pairs of direct amide cross peaks in the ¹H{¹⁵N} SBC-NOE spectrum (Oh & Markley, 1990a; Figure 4); the NOE relay cross peaks can be compared with ¹H{¹H} NOESY data. In Figure 4, one weakly observed cross peak (enclosed by a rectangle) was not assigned. Its corresponding ¹⁵N signal was identified in the 1D 15N NMR spectrum (Oh & Markley, 1990b; Figure 1).

Aliphatic Side-Chain Nitrogens. The side-chain nitrogens of all Asn (1) and Gln (5) residues were accounted for by resonances resolved in the ¹H₁¹⁵N₁ SBC spectrum (Figure 4). The side-chain amide (-NH₂) groups of Asn and Gln exhibit pairs of cross peaks in the 1H{15N} SBC spectrum that serve to distinguish them from the single peaks of backbone amide (-NH-) groups. Assignments of these nitrogens were based on the ¹³C[¹⁵N] SBC data (Figure 3) by extension of the side-chain carbonyl carbon assignments.

The 15N3 signals of the four lysines in the ferredoxin were resolved and assigned by means of a ¹H{¹⁵N} MBC experiment. Figure 6 compares the 1D ¹⁵N NMR spectrum with two-bond ¹⁵N^{f-1}H^e and three-bond ¹⁵N^{f-1}H^b connectivities of the four lysines identified in the ¹H{¹⁵N} MBC spectrum. Since the 15N³, 1H³ cross peaks overlapped, the nitrogen assignments

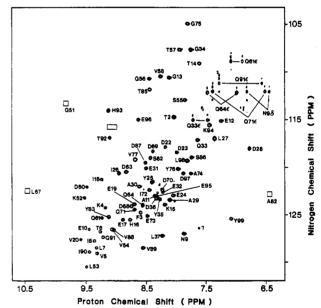


FIGURE 4: ¹H{¹⁵N} SBC spectrum (500 MHz ¹H, 50.68 MHz ¹⁵N) of oxidized Anabaena 7120 ferredoxin. The sample consisted of 0.5 mL of 6.5 mM [95% U- 15 N] ferredoxin in 90% 1 H₂O/10% 2 H₂O containing 50 mM phosphate buffer at pH 7.1. The spectrum was recorded with ¹⁵N decoupling during acquisition; as a result, the cross peaks appear as singlets. A jump and return pulse sequence (Plateau, & Gueron, 1982) was used for solvent suppression. The square boxes indicate cross peaks that were lost by this solvent-suppression scheme. Cross peaks were observed at these positions when water-peak irradiation was used for solvent suppression (Figure 7). The rectangular box indicates the position of a cross peak visible only at lower contour levels. The spectral width in the ¹⁵N dimension was set to the minimum value (64.78 ppm). 450 FID blocks were collected as 4096 data points; each represented the average of 72 transients. The experiment time was 16 h. The labeling scheme for assigned cross peaks is the same as in Figure 1. The weak peak labeled "?" was assigned tentatively to Ser⁶⁵.

derived from the lysine ¹H^e assignments (Oh & Markley, 1990a). Lys⁵² did not show any multiple-bond ¹H-¹⁵N cross

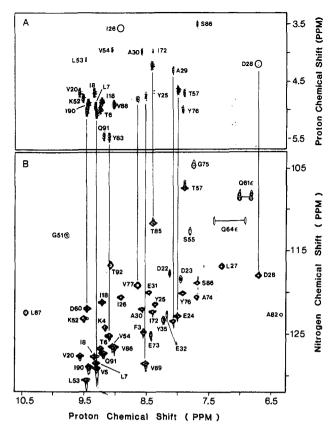


FIGURE 5: Two-dimensional (A) 1H COSY spectrum (600 MHz) and (B) $^1H_1^{15}N_1^3$ SBC (500 MHz 1H , 50.68 MHz ^{15}N) of oxidized Anabaena 7120 ferredoxin recorded in 2H_2O . The sample for spectrum A consisted of 0.5 mL of 9 mM ferredoxin dissolved in 2H_2O containing 50 mM phosphate buffer at pH* 7.5. The sample for spectrum B was the same as that described in Figure 4 except that the protein was dissolved in 2H_2O . 512 blocks of FID's were collected as 4096 data points; each represented the average of 104 transients for (A) or 12 transients for (B). The $^1H_1^{15}N_1^3$ SBC spectrum, which was recorded 8 h following sample preparation, contains more cross peaks than the 1H COSY spectrum, which was recorded about 48 h after sample preparation.

peaks, but it could be assigned by elimination. The $^{15}N^{\zeta}$, $^{1}H^{\epsilon}$ cross peaks are weaker than the $^{15}N^{\zeta}$, $^{1}H^{\delta}$ cross peaks, as ex-

pected, since $^2J_{\rm N-H}$ is smaller than $^3J_{\rm N-H}$ (Bystrov, 1976). $^{15}{\rm N}$ NMR signals from the one $^{15}{\rm N}^4$ and two $^{15}{\rm N}^\eta$ of the single arginine (Arg⁴²) were assigned in the 1D $^{15}{\rm N}$ NMR spectrum (Oh & Markley, 1990b; Figure 1) on the basis of chemical shift considerations (Witanowski et al., 1981). In the crystal structure, Arg⁴² is located on the loop that tightly surrounds the paramagnetic 2Fe·2S* center, and the side chain of Arg⁴² points away from the 2Fe·2S* center (Tsukihara et al., 1981). The coupling connectivities for Arg⁴² are totally missing in the COSY spectrum, owing to paramagnetic broadening; however, its side-chain nitrogens are observed. The weak Arg⁴² $^{11}{\rm H}^{\epsilon}-^{15}{\rm N}^{\epsilon}$ single-bond cross peak also was observed in the $^{11}{\rm H}^{15}{\rm H}$ SBC spectrum (Figure 7).

Histidine Ring Nitrogens. We used the IHISN SBC experiment (Figure 7) to elucidate the combined ¹⁵N, ¹H spin systems of the two histidine residues. The ¹H{¹⁵N} SBC 2D spectrum normally contains cross peaks only from one-bond coupling (${}^{1}J_{NH} = 90 \text{ Hz}$ for amide ${}^{15}N - {}^{1}H$). With the imidazole rings of histidine, however, because the multiple-bond coupling constants are fairly large (${}^2J_{\text{N}'^2-\text{H}^{\text{d}}} = -10.2$, ${}^2J_{\text{N}^{\text{d}}-\text{H}^{\text{d}}} = -8.2$, ${}^2J_{\text{N}^{\text{d}}-\text{H}^{\text{d}}} = -5.9$, and ${}^3J_{\text{N}^{\text{d}}-\text{H}^{\text{d}}} = -1.8$ at pH 7.6; Blomberg & Rüterjans, 1983), we found cross peaks corresponding to two- or three-bond coupling. The cross-peak intensities (Figure 7), which reflect the magnitudes of the coupling constants between the correlated ¹H and ¹⁵N atoms, were used to provide assignments to particular nitrogens and hydrogens. The most intense cross peaks were assigned to ${}^{2}J_{N^{\prime 2}-H^{\prime 1}}$ correlations, which exhibit the largest coupling constant. A cross peak corresponding to the ${}^3J_{\mathrm{N}^{61}-\mathrm{H}^{62}}$ interaction (smallest coupling constant) is missing in each rectangle (Figure 7). Assignment of the combined ¹⁵N, ¹H spin systems to individual histidines (His16 and His93) was accomplished by comparing these connectivities to the sequence-specific imidazole ¹H assignments (Oh & Markley, 1990a).

Proline and Amino-Terminus Nitrogens. The ¹⁵N resonances from the three prolines (Pro²¹, Pro³⁸, and Pro⁸⁴) were assigned, two from the ¹³C' resonance assignments of their respective preceding residues (Val²⁰, Leu³⁷) by ¹³C-¹⁵N correlations (Figure 3) and the third by elimination on the basis of its characteristic chemical shift. The proline identification based on chemical shift were confirmed by noting the longer

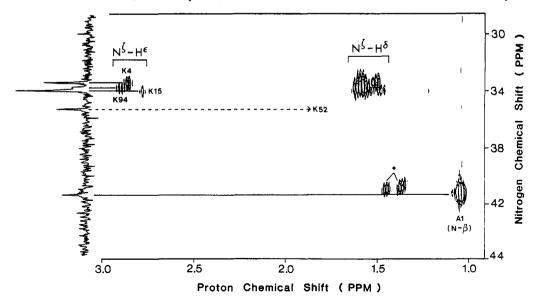


FIGURE 6: ¹H{¹⁵N} MBC spectrum (500 MHz ¹H, 50.68 MHz ¹⁵N) of oxidized Anabaena 7120 ferredoxin. The sample was the same as that described in Figure 5B. The delay time was set 70 ms to optimize for 7-Hz multiple-bond ¹H-¹⁵N couplings. Positive and negative components of peaks are plotted without distinction. The 1D ¹⁵N spectrum displayed over the ¹⁵N chemical shift axis is the one described in Figure 1 of the following paper (Oh & Markley, 1990b). The spectrum contains two spurious cross peaks labeled with asterisks (*) that line up at a common ¹⁵N chemical shift; since no ¹⁵N signal was detected at this chemical shift in the 1D ¹⁵N spectrum, they appear to be artifacts.

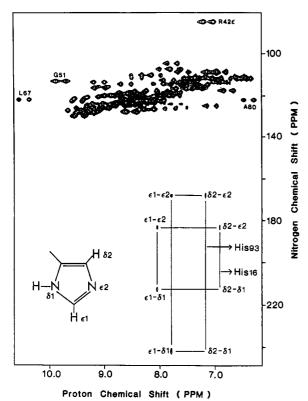


FIGURE 7: ¹H{¹⁵N} SBC spectrum (500 MHz ¹H, 50.68 MHz ¹⁵N) of oxidized Anabaena 7120 ferredoxin. The spectral width in the 15N dimension was 259.11 ppm, which included all downfield ¹⁵N resonances. The sample was the same as that described in Figure 4. The spectrum was recorded without ¹⁵N decoupling during acquisition; as a result, the cross peaks appear as doublets. Solvent suppression was achieved by irradiation at the solvent frequency during the relaxation delay (1.2 s). Cross peaks in the upper part of the spectrum represent single-bond ¹H-¹⁵N correlations. The cross peaks assigned to Gly⁵¹, Leu⁶⁷, and Ala⁸², which were not observed in Figure 4, are labeled. Cross peaks representing multiple-bond ¹H-¹⁵N connectivities in the histidine ring are labeled according to the nomenclature shown in the inset. For clarity, only one tautomeric form of the neutral imidazole ring of histidine is shown. A total of 480 FID blocks were collected as 4096 data points; each represented the average of 80 transients. The experiment time was 18 h.

spin-lattice relaxation times (T_1) of the three Pro ¹⁵N signals (due to the absence of a proton on the proline nitrogen) as compared to those of the other amide nitrogens (Oh & Markley, 1990b). In principle, the proline ¹⁵N also can be assigned from ¹H{¹⁵N} MBC data. However, the ¹⁵N signals of the three prolines did not show any multiple-bond cross peaks (data not shown).

The ¹⁵N resonance from the amino terminus of a protein usually falls in the lysine ¹⁵N⁵ region and may be difficult to distinguish from the lysine signals on the basis of a 1D spectrum. In the present case, the ¹⁵N signal of Ala¹ was identified cleanly by a cross peak in the ¹H{¹⁵N} MBC spectrum (Figure 6), which was attributed to a three-bond connectivitiy between the alanine ${}^{1}H^{\beta}$ and ${}^{15}N$.

Assignments to Residues Affected by Paramagnetic Interactions. In the ¹H COSY experiment, cross-peak intensities are proportional to the homonuclear two- or three-bond coupling constant; the three-bond coupling varies between O and 16 Hz depending on the dihedral angle. Thus, one cannot observe all possible cross peaks from three-bond scalar-coupled proton pairs. For a small diamagnetic protein, the missing peaks usually can be reconstituted from NOESY data since NOE cross peaks from vicinal protons are strong in cases when the corresponding COSY peaks are weak. In larger proteins or paramagnetic proteins, however, such cross peaks often are

Table I: Distances (Å) between the Two Iron Atoms of the 2Fe-2S* Center and the Carbon Atoms of Those Amino Acids Whose ¹H Spin Systems Were Totally Absent or Only Partly Observed in 1H1H1 2D Spectra

		distance ^b				distance ^b	
residue		Fe1	Fe2	residue		Fel	Fe2
Ala ⁴³	Cα	5.69	5.80	Ser ⁴⁷	Cα	5.91	5.79
	C^{β}	6.71	7.17		C^{β}	7.35	7.36
Ala ⁴⁵	C^{α}	5.98	7.00	Ser ⁶⁵	C^{α}	12.99	11.34
	C^{β}	6.65	8.02		C^{β}	12.73	11.14
Ala ⁵⁰	C^{α}	8.56	6.57	Thr ⁴⁸	C^{α}	5.86	5.92
	C^{β}	9.00	7.18		C^{β}	5.79	6.46
Leu ²⁷	Cα	11.34	9.62		C^{γ}	4.60	10.67
	C^{β}	9.89	8.30	Thr ⁷⁹	Cα	9.54	7.05
Leu ⁷⁸	Cα	8.88	6.40		C^{β}	10.30	7.93
	C^{β}	8.78	6.41		C^{γ}	5.78	8.29
Phe^{39c}	C^{β}	6.15	6.10	Val ⁸¹	Cα	9.98	7.93
	C^{γ}	7.29	7.50		C^{β}	9.86	7.94
Phe ⁶⁶	C^{β}	10.23	8.78		C^{γ}	8.68	7.01
	C^{γ}	10.78	9.50		$C^{\gamma'}$	10.08	8.01

^a Distances are presented only for carbon atoms that are candidates for cross peaks observed in the ¹³C{¹³C} DQC spectrum. ^bDistances were calculated from the coordinates of Spirulina platensis ferredoxin (Tsukihara et al., 1981). Fel is the iron atom that is ligated to Cys⁴¹ and Cys⁴⁶; Fe2 is the iron atom that is ligated to Cys⁴⁹ and Cys⁸⁰. ^c Residue 39 in S. platensis ferredoxin is tyrosine; it is replaced by phenylalanine in Anabaena 7120 ferredoxin. The distances of the C^{β} and C^{γ} of this residue from the iron atoms were assumed to be identical in both proteins.

missing in NOESY spectra particularly when the relaxation times of resonating nuclei are shorter than the NOESY mixing

Heteronuclear single-bond correlation experiments involve coherence-transfer steps that utilize large heteronuclear single-bond couplings (${}^{1}J_{CH} = 140-160 \text{ Hz}$ and ${}^{1}J_{NH} = 90 \text{ Hz}$). They allow the detection of ¹H resonances that are too broad to be detected in homonuclear ¹H NMR experiments. More ¹³C spin systems than ¹H spin systems can be detected since the ¹³C(¹³C) DQC experiment utilizes the large one-bond ^{13}C - ^{13}C coupling (\sim 50 Hz) and since the paramagnetic line broadening effect on ¹³C resonances is 16 times smaller than that on ¹H resonances (for ¹H and ¹³C nuclei at the same distance from a paramagnetic center; Bloembergen & Morgan,

In the ¹³C{¹³C} DQC spectrum of oxidized Anabaena 7120 ferredoxin, complete or partial ¹³C-¹³C connectivities were determined for several residues whose corresponding ¹H spin systems were unobserved or only partly observed in the COSY spectrum; complete carbon spin systems for one each of Ala, Phe, Ser, Thr, Tyr, and Val and incomplete ¹³C-¹³C connectivities for one Leu and one Phe. Classification of the ¹³C spin systems by amino acid type was based on characteristic ¹³C chemical shifts and ¹³C-¹³C connectivity patterns. Their sequence-specific assignments to Tyr²⁵, Leu²⁷, Ala⁵⁰, Phe³⁹, Phe⁶⁶, Ser⁶⁵, Thr⁷⁹, and Val⁸¹ were based primarily on the proximity of these residues to the 2Fe-2S* center in the X-ray crystal structure of a related ferredoxin (Tsukihara et al., 1981). These (except for Leu²⁷) are the only ¹³C assignments that were based on the crystal structure of the ferredoxin.

Table I shows the distances from the 2Fe-2S* center of carbon atoms of those residues whose ¹H resonances were not resolved in 2D spectra. Among the three alanines not observed in homonuclear ¹H 2D spectra, Ala⁵⁰ is the farthest from the two irons; thus, the unassigned Ala carbon connectivities observed in the ¹³C{¹³C} DQC spectrum were assigned to Ala⁵⁰. Similar arguments were used to assign carbons of Leu²⁷, Ser⁶⁵, and Thr⁷⁹. The Leu²⁷ assignment was confirmed by the identification of the ¹³C', ¹⁵N cross peak from the dipeptide

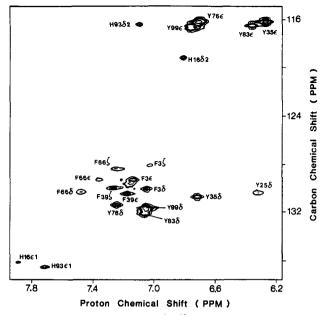


FIGURE 8: Aromatic region of the ¹H{¹³C} SBC spectrum of oxidized [26% U-¹³C] ferredoxin from *Anabaena* 7120. The protein sample and experimental conditions were the same as described in Figure 1, except that the delay time in the pulse sequence was set to 3.13 ms in order to optimize for the 160-Hz aromatic ¹H-¹³C couplings. The intensity labeled with an asterisk (*) appears to be an artifact since all of the aromatic carbons have been assigned.

Ile²⁶-Leu²⁷ in the ¹³C{¹⁵N} SBC spectrum (Figure 3). Most of the protons attached to the observed carbons of these four amino acids were assigned by the presence of cross peaks in the ¹H_{¹³C} SBC spectrum (Figure 1). Figure 8 shows assignments in the aromatic region of the ¹H(¹³C) SBC spectrum. ¹Hα, ¹HN cross peaks from Phe³⁹ and Phe⁶⁶ were not observed in COSY and NOESY spectra. Complete 13C-13C connectivities were observed for Phe⁶⁶ in the ¹³C(¹³C) DQC spectrum (data not shown). However, ¹³C-¹³C connectivities for only the ring portion of Phe³⁹ were observed. The latter connectivities were assigned to Phe³⁹ and the former to Phe⁶⁶ on the basis of the fact that Phe³⁹ is closer to the 2Fe-2S* center than Phe⁶⁶ (Table I). The T_1 of the ¹³C $^{\gamma}$ assigned to Phe³⁹ was six times shorter than that assigned to Phe⁶⁶ (Chan & Markley, 1983). All aromatic carbon assignments were extended to the attached protons (Figure 8) except ¹H^δ of Phe³⁹. Its line width must be broadened in comparison with the coupling constant (>1J_{CH}). The ¹H^δ, ¹H^ε cross peak of Phe³⁹ also was not observed in COSY and NOESY spectra. The remaining tyrosine aromatic ¹³C-¹³C correlation in the ¹³C{¹³C} DQC spectrum was assigned to Tyr25 by elimination, since those of the other four tyrosines were assigned previously. The ${}^1H^{\delta}, {}^1H^{\epsilon}$ cross peak from Tyr²⁵ was not observed in COSY or NOESY spectra.

DISCUSSION

All of the ¹³C and ¹⁵N resonance assignments are summarized, along with ¹H resonance assignments, in Table I of the preceding paper in this series (Oh & Markley, 1990a). We note that the ¹³C-¹³C connectivities assigned to Glu and Asp fall in a different chemical shift region from those of Gln and Asn, respectively, in the ¹³C{¹³C} DQC map. The side-chain carboxy carbons of all Glu and Asp resonate well downfield from those of all Gln and Asn, except for Glu⁹⁵ and Gln³³ (Figure 9). Thus, the environmental contribution to the chemical shifts of side-chain carbonyl carbons appears to be smaller than that of electron shielding. This means that these amino acid types can be distinguished correctly, in most cases,

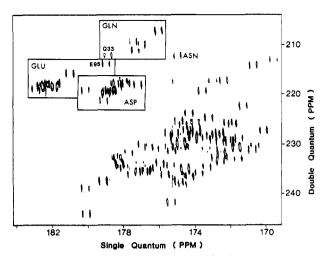


FIGURE 9: Carbonyl carbon region of the ¹³C{13C} DQC spectrum of oxidized [26% U-¹³C] ferredoxin from *Anabaena* 7120 described in Figure 2. The four different types of side-chain carbonyl carbons lie in separated spectral regions. Other peaks represent ¹³C′, ¹³Ca+′ cross peaks from the peptide backbone. Positive and negative components of each peak are plotted here without distinction.

on the basis of their chemical shifts in the ¹³C{¹³C} DQC spectrum alone.

In the past, selective ¹⁵N labeling of one of the two nitrogens has been the method of choice for the specific assignments of imidazole ring nitrogens of histidine. This has required laborious organic synthesis. The simple technique for assigning imidazole ring nitrogens presented in this paper appears to have general applicability, since similar characteristic box-shaped ¹H-¹⁵N correlation patterns (Figure 7) have been obtained in ¹H{¹⁵N} SBC spectra of three other proteins, flavodoxin and cytochrome c-553 from Anabaena 7120 (W. M. Westler, B. J. Stockman, and J. L. Markley, unpublished results) and staphylococcal nuclease (A. P. Hinck, S. N. Loh, J. Wang, and J. L. Markley, unpublished results). Although multiple-bond ¹H-¹⁵N connectivities of the imidazole ring of a histidine also can be determined by the 1H{15N} MBC experiment, such data do not provide the characteristic differences in peak intensities needed to assess the magnitudes of multiple-bond coupling constants and allow specific ¹⁵N assignments.

The assignments presented in this paper and the preceding paper (Oh & Markley, 1990a) provide the foundation for future studies of the structure, dynamics, and molecular interactions of this protein. The analysis of interproton distances will be greatly aided by ¹H{¹³C} SBC-NOE and ¹H{¹⁵N} SBC-NOE data since both ¹³C and ¹⁵N are assigned. Homoand heteronuclear coupling constant measurements, the latter obtained with labeled samples, will provide additional constraints for refining the three-dimensional structure. In addition, the assigned ¹³C and ¹⁵N resonances can serve as reporters of interactions between the ferredoxin and its redox partners.

ACKNOWLEDGMENTS

We thank Dr. W. M. Westler for assistance and helpful discussions.

REFERENCES

Bax, A., & Summers, M. F. (1986) J. Am. Chem. Soc. 108, 2093-2094.

Bax, A., & Marion, D. (1988) J. Magn. Reson. 78, 186-191.
Bax, A., Griffey, R. H., & Hawkins, B. L. (1983) J. Magn. Reson. 55, 301-315.

- Bax, A., Kay, L. E., Sparks, S. W., & Torchia, D. A. (1989) J. Am. Chem. Soc. 111, 408-409.
- Blomberg, F., & Rüterjans, H. (1983) *Biol. Magn. Reson.* 5, 21-73.
- Brühwiler, D., & Wagner, G. (1986) J. Magn. Reson. 69, 546-551.
- Bystrov, V. F. (1976) Prog. Nucl. Magn. Reson. Spectrosc. 10, 58-61.
- Chan, T.-M., & Markley, J. L. (1983) Biochemistry 22, 5996-6002.
- Clore, G. M., Bax, A., Wingfield, P., & Gronenborn, A. M. (1988) FEBS Lett. 238, 17-21.
- Fesik, S. W., & Zuiderweg, E. R. P. (1989) J. Magn. Reson. 78, 588-593.
- Fesik, S. W., Gampe, R. T., Jr., & Zuiderweg, E. R. P. (1989) J. Am. Chem. Soc. 111, 770-772.
- Glushka, J., & Cowburn, D. (1987) J. Am. Chem. Soc. 109, 7879-7881.
- Griffey, R. H., & Redfield, A. G. (1987) Q. Rev. Biophys. 19, 51-82.
- Grissom, C. A., & Markley, J. L. (1989) Biochemistry 28, 2116-2124.
- Gronenborn, A. M., Bax, A., Wingfield, P. T., & Clore, G. M. (1989a) *Biochemistry 28*, 5081-5089.
- Gronenborn, A. M., Bax, A., Wingfield, P. T., & Clore, G. M. (1989b) FEBS Lett. 243, 93-98.
- Kay, L. E., Brooks, B., Sparks, S. W., Torchia, D. A., & Bax, A. (1989) J. Am. Chem. Soc. 111, 5488-5490.
- Lerner, L., & Bax, A. (1986) J. Magn. Reson. 69, 375-380. Markley, J. L. (1989) Methods Enzymol. 176, 12-64.
- McCain, D. C., Ulrich, E. L., & Markley, J. L. (1988) J. Magn. Reson. 80, 296-305.
- Montelione, G. T., & Wagner, G. (1989) J. Am. Chem. Soc. 111, 3096-3098.
- Montelione, G. T., Winkler, M. E., Rauenbuehler, P., & Wagner, G. (1989) J. Magn. Reson. 82, 198-204.
- Mooberry, E. S., Oh, B.-H., & Markley, J. L. (1989) J. Magn. Reson. 85, 147-149.
- Niemczura, W. P., Helms, G. L., Chesnick, A. S., Moore, R. E., & Bornemann, V. (1989) *J. Magn. Reson.* 81, 635-640.
- Nirmala, N. R., & Wagner, G. (1988) J. Am. Chem. Soc. 110, 7557-7558.
- Oh, B.-H., & Markley, J. L. (1989) Biopolymers 28, 1833-1837.

- Oh, B.-H., & Markley, J. L. (1990a) Biochemistry (first paper of three in this issue).
- Oh, B.-H., & Markley, J. L. (1990b) *Biochemistry* (third paper of three in this issue).
- Oh, B.-H., Westler, M. W., Darba, P., & Markley, J. L. (1988) Science 240, 908-911.
- Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085.
- Ortiz-Polo, G., Krishnamoorthi, R., Markley, J. L., Live, D. H., Davis, D. G., & Cowburn, D. (1986) J. Magn. Reson. 68, 303-310.
- Plateau, P., & Guéron, M. (1982) J. Am. Chem. Soc. 104, 7310-7311.
- Robertson, A. D., Rhyu, G. I., Westler, W. M., & Markley, J. L. (1989) *Biopolymers* (in press).
- Shaka, A. J., Keeler, J., Frenkiel, T., & Freeman, R. (1983) J. Magn. Reson. 52, 335-338.
- Shon, K., & Opella, S. J. (1989) J. Magn. Reson. 82, 193-197.
 Stockman, B. J., & Markley, J. L. (1989) in Advances in Biophysical Chemistry (Bush, C. A., Ed.) Vol. 1, JAI Press, Greenwich, CT (in press).
- Stockman, B. J., Reily, M. D., Westler, W. M., Ulrich, E. L., & Markley, J. L. (1989) *Biochemistry* 28, 230-236.
- Torchia, D. A., Sparks, S. W., & Bax, A. (1989) *Biochemistry* 28, 5509-5524.
- Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T., & Matsubara, H. (1981) J. Biochem. 90, 1763-1773.
- Wagner, G., & Brühwiler, D. (1986) Biochemistry 25, 5839-5843.
- Wang, J., Hinck, A. P., Loh, S. N., & Markley, J. L. (1990) Biochemistry 29, 102-113.
- Westler, W. M., Ortiz-Polo, G., & Markley, J. L. (1984) J. Magn. Reson. 58, 354-357.
- Westler, W. M., Kainosho, M., Nagao, H., Tomonaga, N., & Markley, J. L. (1988a) J. Am. Chem. Soc. 110, 4093-4095.
- Westler, W. M., Stockman, B. J., Markley, J. L. Hosoya, Y., Miyake, Y., & Kainosho, M. (1988b) J. Am. Chem. Soc. 110, 6256-6258.
- Witanowski, M., Stefaniak, L., & Webb, G. A. (1981) Annu. Rep. NMR Spectrosc. 11B, 1-502.
- Zuiderweg, E. R. P., & Fesik, S. W. (1989) *Biochemistry 28*, 2387-2391.